Author Affiliations
Abstract
1 University of California, Davis, Department of Electrical and Computer Engineering, Davis, California, United States
2 W&WSens Devices, Inc., Los Altos, California, United States
3 University of California, Baskin School of Engineering, Department of Electrical and Computer Engineering, Santa Cruz, California, United States
The photosensitivity of silicon is inherently very low in the visible electromagnetic spectrum, and it drops rapidly beyond 800 nm in near-infrared wavelengths. We have experimentally demonstrated a technique utilizing photon-trapping surface structures to show a prodigious improvement of photoabsorption in 1-μm-thin silicon, surpassing the inherent absorption efficiency of gallium arsenide for a broad spectrum. The photon-trapping structures allow the bending of normally incident light by almost 90 deg to transform into laterally propagating modes along the silicon plane. Consequently, the propagation length of light increases, contributing to more than one order of magnitude improvement in absorption efficiency in photodetectors. This high-absorption phenomenon is explained by finite-difference time-domain analysis, where we show an enhanced photon density of states while substantially reducing the optical group velocity of light compared to silicon without photon-trapping structures, leading to significantly enhanced light–matter interactions. Our simulations also predict an enhanced absorption efficiency of photodetectors designed using 30- and 100-nm silicon thin films that are compatible with CMOS electronics. Despite a very thin absorption layer, such photon-trapping structures can enable high-efficiency and high-speed photodetectors needed in ultrafast computer networks, data communication, and imaging systems, with the potential to revolutionize on-chip logic and optoelectronic integration.
photoabsorption photon trapping group-velocity reduction photodetectors silicon photonics 
Advanced Photonics Nexus
2023, 2(5): 056001
Author Affiliations
Abstract
1 Electrical and Computer Engineering, University of California—Davis, Davis, California 95618, USA
2 W&WSens Devices, Inc., 4546 El Camino, Suite 215, Los Altos, California 94022, USA
3 Electrical Engineering, Baskin School of Engineering, University of California, Santa Cruz, California 95064, USA
4 e-mail: sislam@ucdavis.edu
In this paper, high-speed surface-illuminated Ge-on-Si pin photodiodes with improved efficiency are demonstrated. With photon-trapping microhole features, the external quantum efficiency (EQE) of the Ge-on-Si pin diode is >80% at 1300 nm and 73% at 1550 nm with an intrinsic Ge layer of only 2 μm thickness, showing much improvement compared to one without microholes. More than threefold EQE improvement is also observed at longer wavelengths beyond 1550 nm. These results make the microhole-enabled Ge-on-Si photodiodes promising to cover both the existing C and L bands, as well as a new data transmission window (1620–1700 nm), which can be used to enhance the capacity of conventional standard single-mode fiber cables. These photodiodes have potential for many applications, such as inter-/intra-datacenters, passive optical networks, metro and long-haul dense wavelength division multiplexing systems, eye-safe lidar systems, and quantum communications. The CMOS and BiCMOS monolithic integration compatibility of this work is also attractive for Ge CMOS, near-infrared sensing, and communication integration.
Photodiodes Ultrafast devices 
Photonics Research
2018, 6(7): 07000734
作者单位
摘要
1 明新科技大学工学院光电系统工程系, 台湾 新竹
2 明新科技大学工学院电子工程研究所, 台湾 新竹
医学美容和化妆品行业的进步与日俱进, 为了揭示皮肤组织的细节, 三维医学成像是必须的。 为了减少侵入性, 在本研究中应用“读出, 而非写入”的想法, 采用非电离辐射的光源与组织采样点的反射光谱实现皮肤的非侵入性成像, 这种新技术称为“光谱分类成像术”。 采用宽带光源与光谱仪收集扫描区域中各采样点的光谱曲线, 根据其交叉相关系数分为几种类型的组织; 使用相应于每一像素之组织类型的颜色填满每一个像素, 可获得一幅彩色的组织断层影像。 其次, 探讨了光谱分类成像术的横向/纵向分辨率和穿透深度、 展示了紫水晶样品与孔雀鱼样本的穿透造影结果、 并探讨交叉相关系数大小与光源波长的数量等变因对于成像结果的影响。 将宽带光源和光谱仪分别更换为RGB LED和微型光谱仪以取得样本光谱, 该系统有潜力最小化为手持式医疗成像产品。 与传统的医学成像技术相较, 没有过于强烈的光源或有害人体的荧光染料被使用, 将可减少非环保化妆品的过度使用, 并促进医学美容产业的进展。
医学成像 反射光谱 交叉相关 断层影像 非侵入性 Medical imaging Reflection spectra Cross-correlation Tomography Non-invasive 
光谱学与光谱分析
2013, 33(7): 1863

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!